
#1

Software Risk Triage
zeroing in on ones problems

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
My research has been carried out at the Jet Propulsion Laboratory, California 
Institute of Technology, under a contract with the National Aeronautics and Space 
Administration and funded through the NASA ESMD Integrated Modeling and 
Simulation effort, NASA’s Office of Safety and Mission Assurance, NASA’s former 
Codes R & T, and JPL’s internal Research and Technology Development program. 

Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 

This presentation draws upon many peoples’ material (but the mistakes are mine).



#2

Ram 

Photo courtesy of Rajeshuni Ramesham, JPL

Hardware faults



#3

Software faults can be hard to spot

A faulty “1” (should be a “0”)



#4

Worse yet…
• By the time they are obvious, it’s often very 

expensive to correct them: 
net result:
crisis management, not risk management
expensive, rushed, far from perfect

• There are very many kinds of software faults 
(“bugs” / “defects”) 
I have seen a breakdown of 200+ kinds of 
software defects!
I have seen a software risk checklist of 400+ 
entries!



#5

What’s needed
Need to zero in and assess critical software 

problems, so know which to address

• Some of them are more important than others
– but which?

• Some of them are more likely than others
– but which?

• How do they compare to other risks of the project?

Electrical Mechanical Software Thermal Chemical Programmatic



#6

Software  Reliability Estimation

System 
Requirements

System 
Design

Software 
Requirements

Software 
Architecture

Software 
Design

Software 
Coding

Software 
Unit Testing

Software 
Integration

Software 
Testing

System 
Integration

System 
Testing

Next Step

Verify

Validate Slide (mal)adapted from JPLers
Lorrain Fesq & Allen Nikora

Statistical Modeling and Estimation of Reliability
e.g., CASRE (A. Nikora), SMERFS (W. Farr)



#7

Software  Reliability Estimation

System 
Requirements

System 
Design

Software 
Requirements

Software 
Architecture

Software 
Design

Software 
Coding

Software 
Unit Testing

Software 
Integration

Software 
Testing

System 
Integration

System 
Testing

Next Step

Verify

Validate Slide (mal)adapted from JPLers
Lorrian Fesq & Allen Nikora

Tbd
early

TOO LATE!



#8

How can a 
Risk Perspective

help?



#9

James Reason’s 
“Swiss Cheese Model”

Barriers 
to bugs

Barriers have holes (they 
are imperfect)

To decrease risk, can use 
better barriers 
(fewer/smaller holes) 
and/or more barriers 

– but at a cost (time, $, 
personnel, …)

Bug pathway



#10

Faster, Better Cheaper in the
“Swiss Cheese Model”

Faster and 
cheaper, but 
riskier

- yes, but by 
how much?

Bug pathway

More 
porous 
barriers

Fewer 
barriers

Barriers 
to bugs



#11

Mars Polar Lander testing
… probable cause of the loss of MPL … premature 
shutdown of the descent engines, resulting from a 
vulnerability of the software to transient signals … the 
leg deployment test was not repeated after the wiring 
error was corrected. A rerun of that test … might have 
detected the software logic problem …

… software was not tested…in the flight configuration…
From “Report on the Loss of the Mars Polar Lander and Deep Space 2 

Missions”
…86.7% to 99.96% chance
[that 3 legs’ deployment be interpreted as a 
touchdown signal]…
From “Low-Cost, Light-Weight Mars Landing 
System”, R. Warwick, IEEE Aerospace Conf. 2003

So the chance that this would have occurred 
on landing but not on a rerun of the post-
correction test is 0.04% - 11.5%



#12

MPL & James Reason’s 
“Swiss Cheese Model”

Faulty requirements flowdown
(system to software)

Software unnecessarily running 
at time of leg deployment

Code changed to add touchdown 
flag – new version had the bug

Not tested in 
flight configuration

n.b., in other respects 
these were risk 

mitigators!

Good news: takes a combination of flaws to lead to failure – the 
individual flaws are unlikely, so their combination is even less so. 
Bad news: there are lots and lots of failure arrows.



#13

Mars Climate Orbiter

From “Mars Climate Orbiter Mishap Investigation Board Phase I Report”

Root Cause: 
Failure to use metric units in the coding of a ground software file, 
“Small Forces,” used in trajectory models
Contributing Causes: 
1. Undetected mismodeling of spacecraft velocity changes
2. Navigation Team unfamiliar with spacecraft
3. Trajectory correction maneuver number 5 not performed
4. System engineering process did not adequately address 
transition from development to operations
5. Inadequate communications between project elements
6. Inadequate operations Navigation Team staffing
7. Inadequate training
8. Verification and validation process did not adequately address 
ground software



#14

Mars Climate Orbiter

Mars Climate Orbiter In Cruise Configuration
(from http://mars.jpl.nasa.gov/msp98/orbiter/cruise.html )

… propulsion maneuvers … to remove 
angular momentum buildup …
occurred 10-14 times more often than 
was expected … because the MCO 
solar array was asymmetrical relative 
to the spacecraft body

A design decision that 
increased the number of 
maneuvers, each of which 
utilized software. 
Unfortunately, the errors 
were cumulative.

From “Mars Climate 
Orbiter Mishap 
Investigation Board 
Phase I Report”

How to gauge software 
risk this early in 

development???



#15

A Unified Risk Model for Software?
How prevalent 
are software 
defects?

How do defects 
propagate to 
become software 
failures?

How would software 
failures affect the 

mission?

How effective are defect 
prevention & detection 

measures?

?



#16

Prevalence and effectiveness
Needed: data on defect prevalence, and 
effectiveness of defect preventions & detections

Software community wide efforts in this 
direction: e.g.,  “What We Have Learned About 
Fighting Defects” http://www.CeBASE.org

… Better collection and sharing of metrics

… More experiments (testbeds, benchmark 
problems, …)

Use Software Reliability Estimation to 
calibrate and validate software defect models



#17

Software/System interface

Use fault trees that straddle the SOFTWARE / SYSTEM 
interface – e.g., work by R. Lutz, JPL; J. Dugan, U. Virginia.

How would software failures affect the mission?

SOFTWARE

SYSTEM

Gives insight into the where to focus



#18

Software fault propagation
How do defects propagate to become software 
failures?
Can fault trees be used within the software architecture 
itself? E.g., current studies by C. Smitds, UMD

Challenge: potentially many non-
local effects of software…



#19

Tying it all together!

Connections between the prevention & detection 
measures and the faults (software defects) they 
decrease (or, on some occasions, increase)

defect prevention & detection measures

Fault trees: propagation & 
system effect



#20

Note: Reality may be complex…

Connections between 210 software defects
and 76 defect prevention & detection measures

!



#21

Tying it all together!
Bayesian models?

Accommodate both expert judgment, and data as it 
becomes available;  capture cause-and-effect 
relationships; can mix discrete (e.g., low/med/high) and 
numeric values.

Current studies by N. Fenton et al (Univ. London), and 
by J. Dugan et al (Univ. Virginia)

Problem 
Complexity

Defects 
Introduced

Design 
Effort

Defects 
Detected

Testing 
Effort

Residual
Defects

Operational
Usage

Operational
Defects

Defects BBN 
(simplified)



#22

I believe a Risk Perspective can help!

While many risk techniques can’t be 
used “as is” on software, it is not a 
forlorn hope to expect that they can 
be adapted for software.

This will take some effort by, and 
cooperation among, the risk and 
software communities.

The need is there! The time is ripe!



#23

Backup Slides

From the 2005 Florida Statues:

316.1985 Limitations on backing.--
(1) The driver of a vehicle shall not back the 
same unless such movement can be made 
with safety and without interfering with other 
traffic. 
…



#24

Extracted from
“The Challenge of Low Defect, Secure Software – too difficult and too expensive? ”
Martin Croxford, in The DoD SoftwareTech, July 2005 ( http://iac.dtic.mil/dacs )

0.1 
defects/kloc

Wow! When 
does this 
work?

Each an 
order of 
magnitude 
reduction

Good Process – good, but not enough

n.b. good 
process also 
quells 
development 
risks



#25

Software is indispensable ☺
Software indispensable – think information processing…

The good news: software often involved in mitigating risk

Mitigates development-time risk:

Mediates between known disparities of hardware

Accommodates unplanned discrepancies

Mitigates operations-time risk:

Plays an active role in fault protection / fault detection, 
isolation & recovery

Allows for deployment and change post-launch
e.g., Galileo’s high-gain antenna, and later radiation 
damage of A2D in a gyro; DS1’s star tracker failure 
during extended mission (used camera instead) 



#26

Software is problematic 

Software indispensable – think information processing…

The bad news: software often a risk contributor

Contributes development-time risk:

Overbudget, overschedule

Contributes operations-time risk:

Numerous instances of problems, ranging from loss of 
some science data to loss of entire mission 
(I’m sure you can think of examples…)

More bad news: the problem continues…



#27

Cumulative number of 
“software”
lessons learned

Data source: http://nen.nasa.gov/portal/site/llis Topic = Software 11/22/2005


